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Rapid Note

Fluctuations at the domain edges of nematic liquid crystals
in two dimensions
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Abstract. Capillary waves and director fluctuations reduce the surface tension of a non-anchoring unbound
nematic surface by comparable amounts. These are relatively small effects in three dimensions, but in two
dimensions they become more significant. We examine the conditions in two dimensions under which they
dominate explicitly within the framework of a model of the Maier-Saupe type. We find that for reasonable
physical parameters of the model the onset of the fluctuation dominated regime generally preempts the
nematic-isotropic transition. We conclude that processes which are sensitive to line tension, such as Ostwald
ripening during two-dimensional liquid-gas phase separation, are much more strongly coupled to anisotropic
molecular interactions and associated nematic ordering than in three dimensions.

PACS. 64.70.Md Transitions in liquid crystals – 68.10.Cr Surface energy (surface tension, interface tension,
angle of contact, etc.) – 61.30.Cz Theory and models of liquid crystal structure

There have been several recent theoretical investigations
of director fluctuation effects at nematic surfaces. On the
one hand, coupling of director modes to capillary wave
displacements of the surface can mean that although the
generic roughness of unbound surfaces in both two and
three dimensions remains (due to the low thermal ex-
citation energies of long wavelength capillary waves), a
nematic surface is less rough than its isotropic coun-
terpart [1]. Elastic coupling to the bulk leads to to an
unusual non-Gaussian form for the associated fluctua-
tion spectrum, a possible direct consequence of which
[2] is the oddly mean-field-like character of the second-
order oblique-homeotropic anchoring transition observed
at some free surfaces. Another avenue concerns the tem-
perature dependence of the surface tension at a free
surface. Critically enhanced surface director fluctuations
explain experimental observations of a surface tension
minimum in the approach to the nematic-isotropic tran-
sition TNI from below [3]. Moreover, under nematic wet-
ting conditions, the sign and magnitude of experimentally
observed discontinuities in the surface tension trend at
TNI itself appears to be sensitive to a director fluctuation-
induced effective interaction between the surface and the
nascent nematic-isotropic interface [3–5].

These effects only feature, however, in the presence
of a surface anchoring potential. In the absence of such
a potential, director fluctuations contribute to the sur-
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face tension an amount similar to the capillary wave
contribution. In three dimensions, one has respectively
−3kBTq

2
c/16π [3] and −kBTq

2
c/4π (see e.g. [6]), where

qc = 2π/σ is a high wavelength cutoff imposed by the
molecular lengthscale σ. The capillary wave contribution
is well documented in a general fluids context [6], and is
known to be a small effect at temperatures relevant to
the nematic phase. In three dimensions, therefore, we do
not expect significant director fluctuation effects at a non-
anchoring free surface.

Here we comment on the less transparent situation in a
two-dimensional nematic. Given that director fluctuations
are well known to be stronger in bulk two dimensions than
in bulk three dimensions, we are interested in how they are
manifest at a non-anchoring domain edge.

A suitable perspective is the familiar Maier-Saupe ap-
proach which is a celebrated non-anchoring scenario. The
idea in the following is to demonstrate that for a reason-
able choice of parameters in such a description, it is fea-
sible for the nematic-isotropic transition to be preempted
by the onset of a fluctuation dominated regime, the fluc-
tuations in question being capillary waves and director
modes in more or less equal measure.

The parameters of the model are positive energy co-
efficients εiso, εani governing a balance between isotropic
and anisotropic components of the microscopic interaction
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potential

Φ(ri − rj , φi, φj) = −v(|ri − rj |)

× {εiso + εani cos 2(φi − φj)}, (1)

where r and φ specify position and orientation of the par-
ticles. For the r−dependence we adopt v(r) = (σ/r)m at
separations r > σ; zero otherwise. The positive exponent
m sets the range.

Mean-field approximation predicts a second-order
nematic-isotropic transition at (see [7,8])

kBTNI =
ρεani

2

∫
v(r)dr =

πρσ2εani

m− 2
(2)

for given particle density ρ (note the condition m > 2).
The hyperscaling critical dimension is higher than two

for this model. Hence mean-field theory misrepresents the
free energy density and equation (2) is a rather weak ap-
proximation. It is also preempted, although not too dras-
tically, by the Kosterlitz-Thouless mechanism [7]. For the
present purpose a rough estimate is sufficient, and we dis-
regard these shortcomings.

In order to self-consistently determine ρ at a thermo-
dynamically stable edge at TNI, we treat the particles as
isotropically interacting hard disks. This is permissible be-
cause at TNI there is no net free energy contribution from
the anisotropic part of the interaction in the above ap-
proximation. Implementing the scaled particle result for
the bulk pressure of the hard disk fluid [9],

phd

kBT
=

ρ

(1− ζ)2
, (3)

we obtain for the grand potential per unit area A in the
bulk

Ω

A
= ρkBT

{
ζ

1− ζ
− log(1− ζ)

}
−
πρ2εiso

m− 2
− µρ, (4)

where ζ = πρσ2/4 is the disk packing fraction, and µ is the
chemical potential. The term in εiso is again mean-field.

The condition for thermodynamic equilibrium is that
Ω is a minimum with respect to ρ. Assuming there are no
particles outside the edge, we also require for stability that
the pressure exerted by the bulk on the edge is zero, i.e.,
p = −Ω/A = 0. Substituting equation (2) and applying
these conditions, we obtain at TNI,

ζ(3− 2ζ)

(1− ζ)2
− log(1− ζ) =

εiso

εani
· (5)

The solution, shown in Figure 1, affords an estimate of the
line tension [10] in the well-known Fowler approximation
(neglect of fluctuations),

τ = ρ2εiso

∫ ∞
0

r2v(r)dr

=
ρ2σ3εiso

m− 3
· (6)
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Fig. 1. Graphical solution of equation (5).
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Fig. 2. Breakdown of the criterion equation (8), substituting
ζ from the previous figure. Solid and dashed lines correspond
respectively to m =∞ and m = 6.

We can now set up a criterion |∆τ |/τ � 1 guaranteeing
the validity of the Fowler approximation, where ∆τ is the
fluctuation renormalization at TNI.

The director and capillary wave contributions to ∆τ
are respectively −kBTqc/2π [11] and −3kBTqc/4π [6].
Hence,

∆τ = −
5kBT

4π
qc, (7)

and |∆τ |/τ � 1 corresponds to

5π2

8ζ

(
m− 3

m− 2

)
εani

εiso
� 1. (8)

As shown in Figure 2, the left hand side diverges as
εiso/εani → 0, the criterion becoming untenable below
εiso/εani ∼ O(10). Introducing a temperature scale by set-
ting εiso/kB ∼ 2000 K from the Lennard-Jones context,
this is tantamount to fluctuation dominance for a nematic-
isotropic transition as low as ∼ 150 K.

Hence, in this model, we can say that generally the
line tension of a non-anchoring 2D nematic edge is dom-
inated by fluctuations. This is not surprising in itself,
given the well-known affinity of fluctuation effects to re-
duced dimensionality. A less intuitively evident corollary is
the significance of liquid crystallinity in determining the
line tension: recall that the specifically liquid-crystalline
contribution (from director fluctuations) is comparable in
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magnitude to the dominant capillary wave contribution.
By contrast, in three dimensions, when the Fowler ap-
proximation is reasonably accurate, nematic surface ten-
sion differs from its isotropic counterpart only by a factor
(1 + η2εani/εiso), where η = 〈cos 2φ〉 is the distribution
averaged order parameter.

There are no experimental templates with which to di-
rectly compare these remarks. However, the “robust” con-
clusion, which is that the balance between isotropic and
anisotropic interactions can govern a dramatic increase in
the sensitivity of line tension to bulk orientational order-
ing, might be relevant to certain experimentally studied
complex fluid systems.

Examples include liquid-gas phase separation in
Langmuir monolayers, during which domain morphol-
ogy [12] and dynamics [13] are characterized by the line
tension. Recent experimental studies (e.g., [14]) have es-
tablished that in monolayers exhibiting high molecular tilt
with respect to the monolayer plane, positional and bond
orientational order is negligible. As discussed in [7], such a
system can be mapped into a 2D nematic or polar-nematic
phase by freezing out the tilt degree of freedom. Ostwald
ripening of domains apparently exhibiting polar-nematic
order floating in the gas phase at room temperature and
low pressure has been observed in [14], and might be a
circumstance where director fluctuations are important in
the way we describe.
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